It's not just the genes, it's the links between them


Once upon a time, I was one of those nerds who hung around Radio Shack and played about with LEDs and resistors and capacitors; I know how to solder and I took my first old 8-bit computer apart and put it back together again with "improvements." In grad school I was in a neuroscience department, so I know about electrodes and ground wires and FETs and amplifiers and stimulators. Here's something else I know: those generic components in this picture don't do much on their own. You can work out the electrical properties of each piece, but a radio or computer or stereo is much, much more than a catalog of components or a parts list.


Electronics geeks know the really fun stuff starts to happen when you assemble those components into circuits. That's where the significant work lies and where the actual function of the device is generated—take apart your computer, your PDA, your cell phone, your digital camera and you'll see similar elements everywhere, and the same familiar components you can find in your Mouser catalog. As miniaturization progresses, of course, more and more of that functionality is hidden away in tiny integrated circuits…but peel away the black plastic of those chips, and you again find resistors and transistors and capacitors all strung together in specific arrangements to generate specific functions.

We're discovering the same thing about genomes.

The various genome projects have basically produced for us a complete parts list—a catalog of bits in our toolbox. That list is incredibly useful, of course, and represents an essential starting point, but how a genome produces an organism is actually a product of the interactions between genes and gene products and the cytoplasm and environment, and what we need next is an understanding of the circuitry: how Gene X expression is connected to Gene Y expression and what the two together do to Gene Z. Some scientists are suggesting that an understanding of the circuitry of the genome is going to explain some significant evolutionary phenomena, such as the Cambrian explosion and the conservation of core genetic processes.

Continue reading "It's not just the genes, it's the links between them" (on Pharyngula)