The choanoflagellate genome and metazoan evolution

Blogging on Peer-Reviewed Research

What are the key innovations that led to the evolution of multicellularity, and what were their precursors in the single-celled microbial life that existed before the metazoa? We can hypothesize at least two distinct kinds of features that had to have preceded true multicellularity.

  • The obvious feature is that cells must stick together; specific adhesion molecules must be present that link cells together, that aren't generically sticky and bind the organism to everything. So we need molecules that link cell to cell. Another feature of multicellular animals is that they secrete extracellular matrix, a feltwork of molecules outside the cells to which they can also adhere.

  • A feature that distinguishes true multicellular animals from colonial organisms is division of labor — cells within the organism specialize and follow different functional roles. This requires cell signaling, in which information beyond simple stickiness is communicated to cells, and signal transduction mechanisms which translate the signals into different patterns of gene activity.

These are features that evolved over 600 million years ago, and we need to use a comparative approach to figure out how they arose. One strategy is to pursue breadth, cast the net wide, and examine divergent forms, for instance by comparing multicellular plants and animals. This approach leads to an understanding of universal properties, of how general programs of multicellular development work. Another is to go deep and examine closer relatives to find the step by step details of our specific lineage, and that's exactly what is being done in a new analysis of the choanoflagellate genome.

Continue reading "The choanoflagellate genome and metazoan evolution" (on Pharyngula)