Reproductive history writ in the genome

Blogging on Peer-Reviewed Research

Fossils are cool, but some of us are interested in processes and structures that don't fossilize well. For instance, if you want to know more about the evolution of mammalian reproduction, you'd best not pin your hopes on the discovery of a series of fossilized placentas, or fossilized mammary glands … and although a few fossilized invertebrate embryos have been discovered, their preservation relied on conditions not found inside the rotting gut cavity of dead pregnant mammals.

You'd think this would mean we're right out of luck, but as it turns out, we have a place to turn to, a different kind of fossil. These are fossil genes, relics of our ancient past, and they are found by digging in the debris of our genomes. By comparing the sequences of genes of known function in different lineages, we can get a measure of divergence times … and in the case of some genes which have discrete functions, we can even plot the times of origin or loss of those particular functions in the organism's history.

Here's one example. We don't have any fossilized placentas, but we know that there was an important transition in the mammalian lineage: we had to have shifted from producing eggs in which yolk was the primary source of embryonic nutrition to a state where the embryo acquired its nutrition from a direct interface with maternal circulation, the placenta. We modern mammals don't need yolk at all … but could there be vestiges of yolk proteins still left buried in our genome? The answer, which you already know since I'm writing this, is yes.

Continue reading "Reproductive history writ in the genome" (on Pharyngula)